Numerically computing real points on algebraic sets
نویسنده
چکیده
Given a polynomial system f , a fundamental question is to determine if f has real roots. Many algorithms involving the use of infinitesimal deformations have been proposed to answer this question. In this article, we transform an approach of Rouillier, Roy, and Safey El Din, which is based on a classical optimization approach of Seidenberg, to develop a homotopy based approach for computing at least one point on each connected component of a real algebraic set. Examples are presented demonstrating the effectiveness of this parallelizable homotopy based approach.
منابع مشابه
Computing real inflection points of cubic algebraic curves
Shape modeling using planar cubic algebraic curves calls for computing the real inflection points of these curves since inflection points represents important shape feature. A real inflection point is also required for transforming projectively a planar cubic algebraic curve to the normal form, in order to facilitate further analysis of the curve. However, the naive method for computing the inf...
متن کاملType-2 fuzzy set extension of DEMATEL method combined with perceptual computing for decision making
Most decision making methods used to evaluate a system or demonstrate the weak and strength points are based on fuzzy sets and evaluate the criteria with words that are modeled with fuzzy sets. The ambiguity and vagueness of the words and different perceptions of a word are not considered in these methods. For this reason, the decision making methods that consider the perceptions of decision...
متن کاملINTERSECTION OF ESSENTIAL IDEALS IN THE RING OF REAL-VALUED CONTINUOUS FUNCTIONS ON A FRAME
A frame $L$ is called {it coz-dense} if $Sigma_{coz(alpha)}=emptyset$ implies $alpha=mathbf 0$. Let $mathcal RL$ be the ring of real-valued continuous functions on a coz-dense and completely regular frame $L$. We present a description of the socle of the ring $mathcal RL$ based on minimal ideals of $mathcal RL$ and zero sets in pointfree topology. We show that socle of $mathcal RL$ is an essent...
متن کاملHomotopies for Connected Components of Algebraic Sets with Application to Computing Critical Sets
Given a polynomial system f , this article provides a general construction for homotopies that yield at least one point of each connected component on the set of solutions of f = 0. This algorithmic approach is then used to compute a superset of the isolated points in the image of an algebraic set which arises in many applications, such as computing critical sets used in the decomposition of re...
متن کاملNumerically intersecting algebraic varieties via witness sets
The fundamental construct of numerical algebraic geometry is the representation of an irreducible algebraic set, A, by a witness set, which consists of a polynomial system, F , for which A is an irreducible component of V(F ), a generic linear space L of complementary dimension to A, and a numerical approximation to the set of witness points, L ∩A. Given F , methods exist for computing a numeri...
متن کامل